
Initial Analysis of GBDE

Roland C. Dowdeswell
elric@imrryr.org

Abstract

GBDE was proposed at BSDCon 2003 as a disk en-
cryption mechanism for FreeBSD GBDE [2]. GBDE’s
author claimed that with GBDE it would take 2128 steps
to compromise one sector, 2256 steps to compromise the
entire disk and that it would take 2384 steps to compro-
mise the disk if the “lock sectors” were destroyed.

We find lower numbers for each of these three as well
as fundamental transactionality issues.

1 Introduction
This is only a rough draft. A very rough draft. I will
be improving the mathematics in here over time. I make
a number of empirical arguments which should be a lit-
tle stronger, but I wanted to give an idea of where I am
going before I spent a lot of time on it. Some of the as-
sertions made are a little strong, and are guesses. I try to
call these out by putting them in paragraphs comprised
of italics such as this one.

GBDE is a pseudo–disk driver presenting the image of
a disk to other operating system facilities such as file sys-
tems anddatabases. It is similar in construction and goals
to NetBSD’s CGD [1], OpenBSD’s svnd(4) or Linux’s
crypto–loop.

At BSDCon 2003 and BSDCan 2004 GBDE’s author
claimed that a brute force attack of the entire disk would
take at least 2256 steps and that if the “lock sectors” are
destroyed it would take at least 2384 steps to crack the
disk[3][4].

2 The Cryptography
In this section we analyse some of the cryptographic
properties of GBDE.

We begin with a quite terse description of how GBDE

works, we expect readers to also read “GBDE—GEOM
Based Disk Encryption”[2] and assume knowledge of
that paper.

We follow this with a number of sections which anal-
yse the methods.

2.1 Brief overview of GBDE’s encryption
In this description, we elide any details which are not rel-
evant to the weaknesses discussed below, such as offset-
ting the encrypted portion within the partition, etc. We
discuss some of these details in Section 2.6.

To turn a pass phrase P into a key:

1. compute (s1, s2, s3) = SHA2/512(P ), where s1

is the first 128 bits, s2 is the second 256 bits and s3

is the remaining bits,
2. either the first sector of the disk or a file is de-

crypted with AES128 s1 to reveal the location of
a “lock sector”,

3. the “lock sector” is decrypted with AES256 and s2,
and

4. the contents of the “lock sector” are shuffled with
the bits in s3.

The lock sector contains (amongst other things) the
master key M and the salt S.

Next we have key–key sectors which contain en-
crypted keys for other sectors. Each key–key is en-
crypted with AES128.

We define i(k, n) to be inserting n into the middle of
k (when considered as bit streams). We define f(k, m)
to be using each byte of k to pick a byte from m as a
direct index, m is assumed to be exactly 256 bytes long.

Now, if we let n be the sector address of the key–key
sector we compute its key k2 as follows:

1. k1 = MD5(i(S, n)),
2. k2 = MD5(i(f(k1, M), n)),

The resulting k2 is the key–key (AES128) used to de-
crypt the key which is in turn a 128 bit AES key which
decrypts the content of its data sector using CBC mode.

This is a very terse description of the algorithm,
please cross-reference “GBDE—GEOM Based Disk En-
cryption”[2] for a better description.

We shall continue using the terminology from this
section in the rest of the paper, for brevity.

2.2 Dictionary attacks

GBDE provides no protection against dictionary attacks.
Dictionary attacks are the quickest and most likely to
yield results. With today’s compute power it is quite
feasible to perform a dictionary attack on GBDE.

GBDE’s author claims in Section 9.3 that users should
use 2-factor authentication if they need security. Al-
though 2-factor authentication does raise the bar, it
should not be viewed as a replacement for providing pro-
tection against dictionary attacks. If we consider using
GBDE on a laptop, it is likely that the physical token will
be quite near the laptop at any given time. The theft of
both of them may be more difficult that the theft of only



one, but not substantially so.
In short physical tokens are not a substitute for pass

phrases, they should be used in conjunction with pass
phrases to enhance security.

GBDE’s author claims that worst case to try a pass
phrase is

WSHA2/512 + WAES128+

Wdisk read + WAES256 + WMD5

and the best case is:

WSHA2/512 + WAES128

But, there is a problem with the best case analysis
which is that the WSHA2/512 can be performed off line
since the pass phrase is not salted before the hash is used.
That leaves us with a best case of only:

WAES128

Using s1, we decrypt the first sector of the disk to
determine the location of the lock sector. It is encoded
as a 64 bit integer which specifies the byte offset into
the disk. If we assume that the disk is 1TB, then only 1
in 216 of these will be valid. So, we have the best case
almost all the time.

We can easily eliminate the potential disk seeks with
memory for time trade offs, so we shall ignore them.
And the other work that we need to do in the worst case
is dwarfed by how infrequent the worst case actually is.

So, the work required to perform a dictionary attack
is only:

WAES128 + 2−16worst case ' WAES128

Now, let’s consider what this means on modern hard-
ware:

Pass phrase strength Time to crack in days
230 0.12
235 3.97
240 127.5
245 4072

The times were calculated on an IBM ThinkPad T41
1.7GHz Pentium M which is not the fastest computer
money can buy. It can perform 100, 000 setkey/encrypt
operations per second.

There is also another dictionary attack which can be
performed partially off line, using s2 and s3 to try to
break the “lock sector”. If there is an entirely predictable
ciphertext block in the lock sector, this could expand into
an off line attack.

We note that the contents of the lock sector do contain
a lot of reasonably predictable data such as the appar-
ent sector size, first sector, last sector. It also contains

quite a bit of random data such as the master key and
salt. If we can predict the first ciphertext block worth of
this data, then an off line dictionary attack might work.
Since the pass phrase includes a “key” which shuffles
the data, we expect that this would work for some pass
phrases but not others. The condition would be that the
pass phrase would need to shuffle the contents of the
lock sector leaving predictable data in the first 128 bits.
For the passphrases which do work, we can then build a
hashed database of the first ciphertext block of the lock
sectors. We then simply scan the disk for matches and
attempt the corresponding pass phrase.

This might be worth further examination.

2.3 Weak master keys
From Section 2.1, we have f which transforms one set
of bytes into another set by indexing into the master key
M . M is comprised of pseudo–random bytes, generated
when GBDE is first configured.

It is reasonably obvious that even if the bytes in M
are uniformly distributed, the bytes in the output of
f1(x) = f(x, M) will most certainly not be uniformly
distributed.

Consider M consisting of all 1’s. This is a perfectly
reasonable, if unlikely random value. In this case, f1

will always return all 1’s.
We generated 10000 random streams of 256 bytes and

noted that the number of distinct bytes in each ranged
from 142 to 181. With results clustering around the
mode 162.

This is an empirical argument that we will replace
with a proper one later.

2.4 Recovering keys from key–key sectors
We can use our discoveries about f from Section 2.3 to
order our brute force attack in such a way that it is likely
to yield results more quickly.

From Section 2.1, we start the attack in the step used
to obtain k2. We do not presume knowledge of k1 at all,
but rather in:

k2 = MD5(i(f(k1, M), n))

We would use the predictable qualities of the output
of f to construct an attack.

For the extreme example, consider if all of the bytes
in M are exactly the same. In this case, f would always
return the same result. k2 would always be the same. If
we knew that M had only one distinct byte beforehand,
then we would be able to obtain access to the disk in
only 28 steps.

Also, consider that if we were to know which m bytes
were contained within M then we could easily construct
a compromise with a worst case of success m16. If we



M bytes Probability
256 0.619708
200 0.540031
180 0.503249
160 0.46049
150 0.436454
140 0.410389
128 0.376133
64 0.129012

Figure 1: Distinct bytes in M against the probability that
the output of f will contain only distinct bytes

also knew the multiplicities of each of the values in M
we could reduce the search further.

Let us consider what we can say if we know noth-
ing about the contents of M except that it is a randomly
generated string of bytes where no attempt to suppress
duplicates is made.

If M has m distinct bytes there are P (m, 16) possible
outputs with distinct bytes out of a total of m16 total
possible outputs. The probability that the output will
contain only distinct bytes is therefore,

P (m, 16)

m16

Please refer to figure 1 for the probabilities given var-
ious m.

We can immediately see that, e.g. for m = 64 if we
choose only values for the output of f that contain re-
peated bytes then we have a 87% chance of being right in
2128

−P (256, 16) steps. This is substantially better than
the normal case where we have only a 38% chance—and
we have just searched only 38% of the keyspace.

We can use this to construct an attack by trying values
for f(k1, M) that contain more repeated bytes than one
would expect from the output of a uniform distribution.

This description needs quite a bit of work. I need
to figure out when to quit, etc. . . There is also the open
question of what the optimal number of repeated bytes
for which to search is, how the search should be struc-
tured, etc. . . We have only demonstrated that we’re more
than likely going to discover the key a little earlier than
we would expect, i.e. we have a 69% chance of discov-
ering the key within the first 38% of the search using this
method.

For each guess g at the output of f(k1, M) we:

1. compute MD5(i(g, n)) for the key–key,
2. decrypt the key with the key–key, and
3. verify the key in it by decrypting and verifying the

sector.

Each time we succeed we gather statistical informa-
tion about M which can be used to speed up further cal-
culations.

If we know m the number of distinct bytes in the mas-
ter key and we know what each of those bytes is, then we
can compromise each sector in m16 steps. After com-
promising enough sectors in this way, we will be able to
statistically analyse this.

From Section 2.3, with our 10000 randomly gener-
ated keys, the weakest one was 142 distinct bytes. This
comes to an effort of 14216 which is approximately
2114.5.

If we know the multiplicity of each byte, then we can
structure our search to do even better than this because
we know the relative probabilities that each byte will ap-
pear.

We will come up with the number which is presumably
reasonably smaller than 2114.5 which represents the ef-
fort to brute force a sector given knowledge of the bytes
and their multiplicities.

After compromising 210 sectors, we should have a
reasonably good idea about m, the byte values in M and
their multiplicity. Considering m = 142, we can then
compromise the entire disk in less than:

2102128 + n2114.5

where n is the number of sectors in the disk.

2.5 From salt to master key
If we assume that we know S, then how could we re-
trieve M? It turns out that we can tease M out, by using
the divide–and–conquer strategy outlined below.

We shall use a 1TB disk as an example. We have 230

sectors and hence we have 230 key–keys.
The algorithm:

1. compute k1 for each of the key–keys,
2. repeat until M is fully known:

(a) find the k1 which has the least unknown dis-
tinct byte values,

(b) crack the key–key discovering the bytes of M
indexed by k1 ,

Cracking the key in step 2b is substantially easier than
a brute force of 2128. If we assume that the number of
distinct bytes in the best k1 is n, then we can crack its
key–key in 28n steps.

Once we have the first 16 bytes of M , each addition
iteration of the loop takes much less time. So, the total
time investment is O(28n + noise) = O(28n).

Compute the least number of distinct bytes I am likely
to find in 230 random 16 byte strings. I think that it will
turn out to be around 10 in which case we can go from
the salt to the master key in 280 steps.

The same sort of analysis as applied in Section 2.4
can be applied to speed the attack, but it is less effective
since there are less bytes chosen from M .



2.6 Other information

EDITOR: need to think of a reasonable title for this sec-
tion.

There are many pieces of other information which var-
ious people have claimed are difficult to find and hence
make brute forcing the disk impossible. GBDE places
the key–key sector at an offset for the beginning of each
group of 32 sectors. The actual disk is offset into the
partition and random bits placed around it, etc.

Finding the key–key sector is at most 25.

The extent of the encrypted disk is not nearly as ran-
dom as one would believe. They typical user is not will-
ing to sacrifice much space. It would be interesting and
we believe possible to define an algorithm that could per-
form a modified binary search for the extent of the disk.

GBDE’s author mentions some of the information that
a cleaning lady can gain, but does not mention that all of
this information could be garnered by a cleaning lady. If
I see a single disk write it updates two disk sectors. Now
I know that the key–key sector is one of them.

We note that disk analysis can provide all of the ad-
vantages of a cleaning lady. Hence an attacker with
reasonable resources should be presumed to be able to
gather all of this information by examining the physical
media.

2.7 Decrypting one file

To find one modest sized file on a GBDE partition, one
would need to:

1. decrypt and verify the superblock,
2. for i in number of directories deep the file is:

(a) decrypt the directory,
(b) find the inode associated with the file or sub-

directory in question,

3. decrypt the file’s blocks.

If we assume that we need n sectors from the disk to
find what we are looking for, then the effort required will
be n2128 for a strict brute force attack.

It has been asserted in various forums that to perform
this attacks, one would need to tackle the problem of an
enormous number of false positives and have enormous
amounts of data storage.

False positives will be quite unlikely, and in the event
that there is one at most it will add a few bits of effort
to the search. If blocks are discovered to be false posi-
tives, one can just backtrack. The only possible storage
requirement would be a small stack.

We can use the knowledge from Section 2.3 to struc-
ture the search in a much more efficient manner.

3 Reliability
Because GBDE turns one sector write into two sector
writes that is a write to the key–sector and a write to
the sector itself, a race condition is introduced where if
the OS crashes or if removable media is removed at the
wrong time the contents of the sector will be lost.

This can manifest itself during surprising operations,
e.g. if a file is read then the atime of the inode is up-
dated. If the OS crashes or if the power fails during this
operation then the inode sector will contain random data
when the operating system reboots.

File systems are built on the fundamental assumption
that sector writes are atomic operations which either suc-
ceed or fail but do not fill the sector with random bits.

To rectify this problem, GBDE would need to imple-
ment a journal keeping track of outstanding operations
and that would reduce its performance substantially.

4 Conclusion
There are number of weaknesses in GBDE which need to
be addressed.

Dictionary attacks are the most feasible way to com-
promise any system which includes a pass phrase.
Claiming that the user should use two factor authenti-
cation both ignores what users actually do and makes
often unwise assumption that the second factor will not
be compromised.

The weak master keys need to be eliminated. This
could be accomplished by ensuring that all of the bytes
in the master key are distinct. We understand that this
makes the compromise described in Section 2.5 easier,
but that attack is still more difficult than using brute
force to compromise each sector.

It would be substantially more prudent to replace f
with a function that has some cryptographic properties.
It would also be prudent to eliminate the divide-and-
conquer compromise by ensuring that the entire master
key is used in deriving the keys for the key–key sectors.
Both the domain and the co–domain of f are subject to
analysis. We do not believe that we have discovered the
only problem, in fact quite to the contrary.

The claims about GBDE’s resistance to brute force
analysis should be adjusted. One cannot use a 128 bit ci-
pher with different keys for each sector and claim much
better than 2128 resistance to brute force attacks. If
GBDE’s author wants to claim greater protection then he
must use a cipher with more bits on each sector.

References
[1] Roland C. Dowdeswell and John Ioannidis. The

cryptographic disk driver. In USENIX Annual Tech-
nical Conference, FREENIX Track, pages 179–186.
USENIX, 2003.



[2] Poul-Henning Kamp. Gbde-geom based disk en-
cryption. In BSDCon, pages 57–68. USENIX, 2003.

[3] Poul-Henning Kamp. Making sure data
is lost. http://phk.freebsd.dk/pubs/bsdcon-
03.slides.gbde.pdf, 2003.

[4] Poul-Henning Kamp. Making sure data is
lost. http://www.bsdcan.org/2004/papers/gbde.pdf,
2004.


